Home
Class 11
MATHS
Consider the equation tan^(2)(cos sqrt(4...

Consider the equation `tan^(2)(cos sqrt(4pi^(2)-x^(2)))-4a tan (cos sqrt(4pi^(2)-x^(2)))+2+2a=0,a` being a parameter. (Given tan1=1.56)
If `a=1/2` then the number of distinct real roots of the equation is

A

0

B

1

C

2

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE -I LEVEL -II MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE -I LEVEL -II INTEGER TYPE QUESTIONS)|10 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE -I LEVEL -II MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|11 Videos
  • TRANSFORMATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I LEVEL-I Straight Objective Type Questions)|41 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

If "tan"^(-1)(sqrt(1+x^(2))-1)/x=4^(@) then

If the equation cos^(2)((pi)/4(sinx+sqrt(2)cos^(2)x))-tan^(2)(x+(pi)/4tan^(2)x)=1 then x=

The number of distinct real roots of the equation tan ( 2 pi x)/( x^(2) + x + 1) = - sqrt(3) is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

The number of solutions of the equation abs(tan^(-1)abs(x))=sqrt((x^(2)+1)^(2)-4x^(2)) is

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

The number of solution of the equation Tan^(-1) sqrt(x^(2)+x)+"Cosec"^(-1) sqrt(1-x^(2)-x)=(pi)/(2) is