Home
Class 12
MATHS
If the planes x=cy+bz,y=az+cx and z=bx+a...

If the planes `x=cy+bz,y=az+cx` and `z=bx+ay` pass through a line then `a^(2)+b^(2)+c^(2)+2abc` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If planes x-cy-bz=0,cx-y+az=0 and bx+ay-z=0 pass through a straight line then a^(2)+b^(2)+c^(2)=

If the planes x-cy-bz=0, cx-y+az=0 and bx+ay-z=0 pass through a line, then the value of a^2+b^2+c^2+2abc is

If the planes x-cy-bz=0, cx-y+az=0 and bx+ay-z=0 pass through a line, then the value of a^2+b^2+c^2+2abc is….

If planes x- cy - bz =0 , cx-y+az =0 and bx + ay - z=0 pass through a staight line the a^(2) +b^(2) +c^(2)=

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Let a,b,c, be any real number. Suppose that there are real numbers x,y,z not all zero such that x=cy+bz,y=az+cx and z=bx+ay. Then a^(2)+b^(2)+c^(2) +2abc is equal to

If x@+y^(2)+z^(2)!=0,x=cy+bz,y=az+cx, and z=bx+ay, then a^(2)+b^(2)+c^(2)+2abc=