Home
Class 12
MATHS
if A=[[0, 1],[ 1, 0]],t h e nA^4=...

if `A=[[0, 1],[ 1, 0]],t h e nA^4=`

Promotional Banner

Similar Questions

Explore conceptually related problems

the inverse of [[1,a, b],[0,x,0],[ 0, 0, 1]] i s[[1,-a,-b],[0 ,1 ,0],[ 0, 0, 1]] t h e n x=

If A=[1 2 0-1 1 2 2-1 1],t h e ndet(A d j(A d jA))= 13 (b) 13^2 (c) 13^4 (d) None of these

If A=[[1,0,1],[0,2,0],[1,-1,4]],A=B+C,B=B^(T) and C=-C^(T) , then C=

If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B d. -64 B

If A_1=[0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0],A_2=[0 0 0i0 0-i0 0i0 0-i0 0 0],t h e nA_i A_k+A_k A_i is equal to 2lifi=k b. Oifi!=k c. 2lifi!=k d. O always

If [1 4 2 0]=[x y^2z0],y<0t h e nx-y+z= 5 (b) 2 (c) 1 (d) -3

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

Let A be a square matrix all of whose entries are integers. Then which one of the following is true? (1) If d e t A""=+-1,""t h e n""A^(1) exists but all its entries are not necessarily integers (2) If d e t A!=""+-1,""t h e n""A^(1) exists and all its entries are non-integers (3) If d e t A""=+-1,""t h e n""A^(1) exists and all its entries are integers (4) If d e t A""=+-1,""t h e n""A^(1) need not exist

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be