Home
Class 12
MATHS
The value of int0 1tan^(-1)((2x-1)/(1+x-...

The value of `int0 1tan^(-1)((2x-1)/(1+x-x^2))dx` is (A) 1 (B) 0 (C) -1 (D) `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is____.

What is the value of int_0^1 (tan^-1 x )/(1+x^2) dx dx

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

STATEMENT 1: The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx=0 STATEMENT 2:int_(a)^(b)f(x)dx=int_(0)^(b)f(a+b-x)dx