Home
Class 13
MATHS
y=f(x) be a real valued twice differenti...

`y=f(x)` be a real valued twice differentiable function defined on `R` then `(d^2y)/(dx^2) ((dx)/(dy))^2+(d^2x)/(dy^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=f(x) be a real valued twice differentiable function defined on R then (d^(2)y)/(dx^(2))((dx)/(dy))^(2)+(d^(2)x)/(dy^(2))=

for any differential function y= F (x) : the value of ( d^2 y) /( dx^2) +((dy)/(dx)) ^3 . (d^2 x)/( dy^2)

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

Find degree and order x(d^(2)y)/(dx^(2))+((dy)/(dx))^(5)-y(dy)/(dx)=3

If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

The degree of the differential equation ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(2)=x sin((d^(2)y)/(dx)) , is