Home
Class 11
MATHS
n is any integer then arg(((sqrt(3)+i)^(...

n is any integer then `arg(((sqrt(3)+i)^(4n+1))/((1-sqrt(3)i)^(4n)))=....`

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(2pi)/(3)`

D

`(5pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise LATEST EXAM MCQS|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise TEXTBOOK ILLUSTRATIONS FOR PRACTICE WORK|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE :|21 Videos
  • BINOMIAL THEOREM

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|7 Videos
  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|9 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Find the value |(1+sqrt(3)i)/(1+i)|

Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1

For a positive integer n , find the value of (1-i)^(n)(1-(1)/(i))^(n)

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .

Find the value of :- (i) (1)/(sqrt(4)) (ii) (1)/(sqrt(16)) (iii) (1)/(sqrt(64))

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........

Use induction to show that for all n in N . sqrt(a+sqrt(a+sqrt(a+....+sqrt(a))))lt (1+sqrt((4a+1)))/(2) where'a' is fixed positive number and n radical signs are taken on LHS.

Let n be a positive integer such that sin(pi/(2n))+cos(pi/(2n))=(sqrt(n))/2 Then

For some integer k, i^(4k)+i^(4k+1)+i^(4k+2)+i^(4k+3) = ..........