Home
Class 11
MATHS
Given that |z+4| le 3 then greatest & le...

Given that `|z+4| le 3` then greatest & least values of |z + 1| are

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (Objective type questions)|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise (Questions of Module) (Knowledge Test :)|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (LONG ANSWER TYPE QUESTIONS)|31 Videos
  • BINOMIAL THEOREM

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|7 Videos
  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|9 Videos

Similar Questions

Explore conceptually related problems

Fill in the blanks of the following If |z+4| le3 , then the greatest and least values of |z+1| are ... and .....

Given that z=1-i

If |z-4/z|=2 then the greatest value of |z| is

If |z-i|le5 and z_(1)=5+3i (where, i=sqrt(-1), ) the greatest and least values of |iz+z_(1)| are

If |z|ge3, then determine the least value of |z+(1)/(z)| .

If |z+4|le3 then the maximum value fo |z+1| is....

For any two complex numbers z_(1) "and" z_(2) , abs(z_(1)-z_(2)) ge {{:(abs(z_(1))-abs(z_(2))),(abs(z_(2))-abs(z_(1))):} and equality holds iff origin z_(1) " and " z_(2) are collinear and z_(1),z_(2) lie on the same side of the origin . If abs(z-(2)/(z))=4 and sum of greatest and least values of abs(z) is lambda , then lambda^(2) , is

For any two complex numbers z_(1) "and" z_(2) , abs(z_(1)-z_(2)) ge {{:(abs(z_(1))-abs(z_(2))),(abs(z_(2))-abs(z_(1))):} and equality holds iff origin z_(1) " and " z_(2) are collinear and z_(1),z_(2) lie on the same side of the origin . If abs(z-(3)/(z))=6 and sum of greatest and least values of abs(z) is 2lambda , then lambda^(2) , is

For any two complex numbers z_(1) "and" z_(2) , abs(z_(1)-z_(2)) ge {{:(abs(z_(1))-abs(z_(2))),(abs(z_(2))-abs(z_(1))):} and equality holds iff origin z_(1) " and " z_(2) are collinear and z_(1),z_(2) lie on the same side of the origin . If abs(z-(1)/(z))=2 and sum of greatest and least values of abs(z) is lambda , then lambda^(2) , is

Given that z=-1+isqrt(3)