Home
Class 11
MATHS
e(1) and e(2) are eccentricities of hype...

`e_(1) and e_(2)` are eccentricities of hyperbola and conjugate hyperbola respectively then prove that `(1)/(e_(1)^(2))+(1)/(e_(2)^(2))=1.`

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE : 11.1|15 Videos
  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE : 11.2|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise (Questions of Module) (Knowledge Test :)|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE (KNOWLEDGE TEST :)|12 Videos

Similar Questions

Explore conceptually related problems

int(e^(2x)-1)/(e^(2x)+1)dx=...

int(1)/((e^(x)+e^(-x))^(2))dx=.....

(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=

I=int(dx)/((1+e^(x))(1+e^(-x)))=...

e_(1) and e_(2) are eccentricities of conies 5x^(2) + 9y^(2) = 45 and 5x^(2) - 4y^(2) = 45 then e_(1) .e_(2) = ……….

Length of transverse axis and conjugate axis in hyperbola are equal then its eccentricity e =…….

Let E=(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"......" Then,

Find eccentricity, coordinates of foci and equation of directrix of the hyperbola (y^(2))/(49) - (x^(2))/(4) = 1 .

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0