Evaluate the determinants below in examples number 1 and 2 `|{:(costheta,-sintheta),(sintheta,costheta):}|`
Text Solution
Verified by Experts
The correct Answer is:
1
Topper's Solved these Questions
DETERMINANTS
KUMAR PRAKASHAN|Exercise Exercise 4.2|19 Videos
DETERMINANTS
KUMAR PRAKASHAN|Exercise Exercise 4.3|9 Videos
CONTINUITY AND DIFFERENTIABILITY
KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
INTEGRALS
KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos
Similar Questions
Explore conceptually related problems
Evaluate the determinants below in examples number 1 and 2 |{:(2,4),(-5,-1):}|
Evaluate the determinants below in examples number 1 and 2 |{:(x^2-x+1,x-1),(x+1,x+1):}|
If tantheta=a/b , find the value of (costheta+sintheta)/(costheta-sintheta)
Prove the following identities: (1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)
Answer each question by selecting the proper alternative from those given below each question so as to make each statement true : (cosectheta-sintheta)(sectheta-costheta)(tantheta+cottheta)=….
Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}| is independent from value of theta
If A=[{:(costheta,sintheta),(-sintheta,costheta):}] then prove that A^(n)=[{:(cosntheta,sinntheta),(-sinn theta,cosntheta):}],n inN .
Prove the following : (All angles are acute angles.) (sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)=2/(sin^(2)theta-cos^(2)theta)
If sectheta=13/5 , show that (2sintheta-3costheta)/(4sintheta-9costheta)=3