Evaluate the determinants below in examples number 1 and 2 `|{:(x^2-x+1,x-1),(x+1,x+1):}|`
Text Solution
Verified by Experts
The correct Answer is:
`x^3-x^2+2`
Topper's Solved these Questions
DETERMINANTS
KUMAR PRAKASHAN|Exercise Exercise 4.2|19 Videos
DETERMINANTS
KUMAR PRAKASHAN|Exercise Exercise 4.3|9 Videos
CONTINUITY AND DIFFERENTIABILITY
KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
INTEGRALS
KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos
Similar Questions
Explore conceptually related problems
Evaluate the determinants below in examples number 1 and 2 |{:(2,4),(-5,-1):}|
Evaluate {:[(x, x+1),(x-1 ,x)]:}
Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,x,x^2),(x^2,1,x),(x,x^2,1):}|=(1-x^3)^2
Using the properties of determinants, prove the following |{:((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2):}|=-8
Find lim_(xrarr1)f(x) , where f(x)={{:(x^(2)-1",",xle1),(-x^(2)-1",",xgt1):}
Find int(x^(4)dx)/((x-1)(x^(2)+1))
If |{:(1,2,x),(1,1,1),(2,1,-1):}|=0 then find x.
If x_(1),x_(2) "and" y_(1),y_(2) are the roots of the equations 3x^(2) -18x+9=0 "and" y^(2)-4y+2=0 the value of the determinant |{:(x_(1)x_(2),y_(1)y_(2),1),(x_(1)+x_(2),y_(1)+y_(2),2),(sin(pix_(1)x_(2)),cos (pi//2y_(1)y_(2)),1):}| is
If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is