Home
Class 12
MATHS
If A=[{:(1,0,1),(0,1,2),(0,0,4):}] then ...

If `A=[{:(1,0,1),(0,1,2),(0,0,4):}]` then show that [3A]=27[A]

Text Solution

Verified by Experts

The correct Answer is:
108
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.2|19 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.3|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,3,-4),(5,1,0),(3,-2,5):}]andI=[{:(1,0,0),(0,1,0),(0,0,1):}] then show that AI=IA=A.

If A=[{:(-1,2,0),(-1,1,1),(0,1,0):}] then show that A^(-1)=A^2

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If A=[{:(1,0,0),(0,1,0),(0,0,1):}] then A^(2)+2A = ……….

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] then , prove that A^(3)-6A^(2)+7A+2I=O .

Find A^(-1)" if "A=[{:(0,1,1),(1,0,1),(1,1,0):}] and show that A^(-1)=(A^2-3I)/2

If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)^(3)=a^(3)I+3a^(2)bA .

If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}] show that (A+B)*(A-B)neA^(2)-B^(2) .