Home
Class 12
MATHS
Find values of x,if (i) |{:(2,4),(5,1)...

Find values of x,if
(i) `|{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}|`

A

1

B

`thereforex=+-sqrt2`

C

`thereforex=+-sqrt3`

D

2

Text Solution

Verified by Experts

The correct Answer is:
`thereforex=+-sqrt3`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.2|19 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.3|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Find values of x for which |{:(3,x),(x,1):}|=|{:()3,2),(4,1):}|

Find the values of x, y and z from the following equations : (i) [{:(4,3),(x,5):}]=[{:(y,z),(1,5):}] (ii) [{:(x+y,2),(5+z,xy):}]=[{:(6,2),(5,8):}] (iii) [{:(x+y+z),(x+z),(y+z):}]=[{:(9),(5),(7):}]

Find x , if [x-5-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=O .

Find the matrix X so that , X[{:(1,2,3),(4,5,6):}]=[{:(-7,-8,-9),(2,4,6):}] .

Find the value of x if the vectors (x,x+1,x+2),(x+3,x+4,x+5) and (x+6,x+7,x+8) are coplanar.

Find non - zero values of x satisfying the matrix equation : x*[{:(2x,2),(3,x):}]+2[{:(8,5x),(4,4x):}]=2[{:(x^(2)+8,24),(10,6x):}] where x ne0 .

Find the value of x for which the points (x,-1), (2,1) and (4,5) are collinear.

Using the properties of determinants in Exercise 1 to 6, evaluate |{:(x+4,x,x),(x,x+4,x),(x,x,x+4):}|

Find the value of x for which the points (x, -1) (2,1) and (4, 5) are collinear.

If |{:(x,3,6),(3,6,x),(6,x,3):}|=|{:(2,x,7),(x,7,2),(7,2,x):}|=|{:(4,5,x),(5,x,4),(x,4,5):}|=0 then x is equal to