Home
Class 12
MATHS
Using properties of determinants in Exer...

Using properties of determinants in Exercise 11 to 15 prove that
`|{:(1,1+p,1+p+q),(2,3+2p,4+3p+2q),(3,6+3p,10+6p+3q):}|=1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Work|90 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|42 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(b+c,q+r,y+z),(c+a,r+p,z+x),(a+b,p+q,x+y):}|=2|{:(a,p,x),(b,q,y),(c,r,z):}|

Without expanding the determinant prove that: {:|(0,p-q,p-r),( q-p,0, q-r),(r-p,r-q,0)|:}=0

If cos theta + sin theta = p and sec theta + cosec theta = q , prove that q (p^(2) - 1) = 2p .

Find the direction cosines of the line joining the two points P(-2, 4, -5) and Q(1, 2, 3). 6. Prove that the points (1, 2, 3), (3, 1, 7) and (7, -1, 15) are collinear.

Find the number of distinct rational numbers x such that 0 lt x lt1 and x=p//q , where p ,q in {1,2,3,4,5,6} .

The vertices of the feasible region determined by some linear constraints are (0, 2), (1, 1), (3, 3), (1, 5). Let Z = px + qy where p, q gt 0. The condition on p and q so that the maximum of Z occurs at both the points (3, 3) and (1, 5) is ……..

Centroid of the triangle with verticies P(1, -2, 1), Q(2, 3, -1) and R(1, -1, -1) is _____ .

Find the distance between the points P(1, -3, 4) and Q(-4, 1, 2).

Find equation of plane passing through the points P(1, 1, 1), Q(3, -1, 2) and R(-3, 5, -4) .

KUMAR PRAKASHAN-DETERMINANTS -MISCELLANEOUS EXERCISE - 4
  1. Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(...

    Text Solution

    |

  2. Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),...

    Text Solution

    |

  3. Evaluate |{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosb...

    Text Solution

    |

  4. If a, b and c are real numbers , and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b...

    Text Solution

    |

  5. Solve the equation |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=0. (ane0)

    Text Solution

    |

  6. Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b...

    Text Solution

    |

  7. If A^(-1)=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}] and B=[{:(1,2,-2),(-1,3,0...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that [adjA]^(-1)=adj(A^...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that (A^(-1))^-1=A

    Text Solution

    |

  10. Evaluate |{:(x,y,x+y),(y,x+y,x),(x+y,x,y):}|

    Text Solution

    |

  11. Evaluate |{:(1,x,y),(1,x+y,y),(1,x,x+y):}|

    Text Solution

    |

  12. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  13. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  14. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  15. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  16. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  17. Solve the following system of linear equations 2/x+3/y+(10)/z=4 4/...

    Text Solution

    |

  18. If a,b,c are in A.P then the determinant |{:(x+2,x+3,x+2a),(x+3,x+4,...

    Text Solution

    |

  19. If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,...

    Text Solution

    |

  20. Let A=[{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}] w...

    Text Solution

    |