Home
Class 12
MATHS
Using properties of determinants in Exer...

Using properties of determinants in Exercise 11 to 15 prove that
`|{:(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta)):}|=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Work|90 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|42 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants in Exercise 11 to 15 prove that |{:(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha+beta+gamma)(alpha-beta)

Evaluate Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}|

Show that the determinant Delta (x) is given by Delta (x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x.

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

If a,b,and c are sides of Delta ABC such that |{:(c,bcosB+alphabeta,acosA+balpha+cgamma),(a,c cosB+a beta,b cosA+c alpha+agamma),(b,acosB+b beta,c cosA+aalpha+bgamma):}| =0 (where alpha ,beta,gamma,in R ^(+) "and" angleA,angleB,angleCne(pi)/(2)), Delta ABC is

If alphaandbeta are not the multiple of (pi)/(2)and [{:(cos^(2)alpha,cosalphasinalpha),(cosalphasinalpha,sin^(2)alpha):}]xx[{:(cos^(2)beta,sinbetacosbeta),(sinbetacosbeta,sin^(2)beta):}]=[{:(0,0),(0,0):}] then alpha-beta is ......

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

KUMAR PRAKASHAN-DETERMINANTS -MISCELLANEOUS EXERCISE - 4
  1. Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(...

    Text Solution

    |

  2. Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),...

    Text Solution

    |

  3. Evaluate |{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosb...

    Text Solution

    |

  4. If a, b and c are real numbers , and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b...

    Text Solution

    |

  5. Solve the equation |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=0. (ane0)

    Text Solution

    |

  6. Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b...

    Text Solution

    |

  7. If A^(-1)=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}] and B=[{:(1,2,-2),(-1,3,0...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that [adjA]^(-1)=adj(A^...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that (A^(-1))^-1=A

    Text Solution

    |

  10. Evaluate |{:(x,y,x+y),(y,x+y,x),(x+y,x,y):}|

    Text Solution

    |

  11. Evaluate |{:(1,x,y),(1,x+y,y),(1,x,x+y):}|

    Text Solution

    |

  12. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  13. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  14. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  15. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  16. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  17. Solve the following system of linear equations 2/x+3/y+(10)/z=4 4/...

    Text Solution

    |

  18. If a,b,c are in A.P then the determinant |{:(x+2,x+3,x+2a),(x+3,x+4,...

    Text Solution

    |

  19. If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,...

    Text Solution

    |

  20. Let A=[{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}] w...

    Text Solution

    |