Home
Class 12
MATHS
If a,b,c are in A.P then the determinant...

If a,b,c are in A.P then the determinant
`|{:(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c):}|` is …..

A

0

B

1

C

x

D

2x

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Work|90 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|42 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are A.P then |{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}|=0

If x , y , z are in A.P. , then the value of the determinant are in A.P. , then the value of the determinant |a+2a+3a+2x a+3a+4a+2y a+4a+5a+2z| is a. 1 b. 0 c. 2a d. a

|{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}|=0 where a,b,c are in A.P

If x,y,z in R , then the value of determinant |{:((2^x+2^(-x))^2,(2^x-2^(-x))^2,1),((3^x+3^(-x))^2,(3^x-3^(-x))^2,1),((4^x+4^(-x))^2,(4^x-4^(-x))^2,1):}| is equal to "............"

Absolute value of sum of roots of the equation {:|(x+2,2x+3,3x+4), (2x+3, 3x+4, 4x+5), (3x+5, 5x+8, 10 x+17)|:}=0 is _______.

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

Find x such that the four points A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1) are coplanar.

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=(5x+4)(4-x)^2

If ane0,bne0,cne0 and |{:(0,x^2+a,x^4+b),(x^2-a,0,x-c),(x^3-b,x^2+c,0):}|=? , for x=0

KUMAR PRAKASHAN-DETERMINANTS -MISCELLANEOUS EXERCISE - 4
  1. Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(...

    Text Solution

    |

  2. Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),...

    Text Solution

    |

  3. Evaluate |{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosb...

    Text Solution

    |

  4. If a, b and c are real numbers , and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b...

    Text Solution

    |

  5. Solve the equation |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=0. (ane0)

    Text Solution

    |

  6. Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b...

    Text Solution

    |

  7. If A^(-1)=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}] and B=[{:(1,2,-2),(-1,3,0...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that [adjA]^(-1)=adj(A^...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] Verify that (A^(-1))^-1=A

    Text Solution

    |

  10. Evaluate |{:(x,y,x+y),(y,x+y,x),(x+y,x,y):}|

    Text Solution

    |

  11. Evaluate |{:(1,x,y),(1,x+y,y),(1,x,x+y):}|

    Text Solution

    |

  12. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  13. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  14. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  15. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  16. Using properties of determinants in Exercise 11 to 15 prove that |{:...

    Text Solution

    |

  17. Solve the following system of linear equations 2/x+3/y+(10)/z=4 4/...

    Text Solution

    |

  18. If a,b,c are in A.P then the determinant |{:(x+2,x+3,x+2a),(x+3,x+4,...

    Text Solution

    |

  19. If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,...

    Text Solution

    |

  20. Let A=[{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}] w...

    Text Solution

    |