Home
Class 12
MATHS
For the matrix A=[{:(2,3),(1,2):}] , sho...

For the matrix `A=[{:(2,3),(1,2):}]` , show that `A^2-4A+I_2=0`. Hence, find `A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`A^(-1)=[{:(2,-3),(-1,2):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|42 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook Illustrations for Practice work|34 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE - 4|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

If A=[{:(3,1),(-1,2):}] show that A^2-5A+7I=O . Hence find A^(-1)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O .

For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O . Hence find A^(-1)

Show that A=[{:(5,3),(-1,-2):}] satisfies the equation A^(2)=3A-7I=0 and hence find A^(-1) .

If A = [{:(1,2),(4,2):}] then show that [2A] = 4[A]

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^2-4A+I=O , where I is 2xx2 identity matrix and O is 2xx2 zero matrix. Using this equation find A^(-1)

If A=[{:(3,-5),(-4,2):}] , then find A^(2)-5A-14I . Hence , obtain A^(3) .

If A=[{:(1,2,3),(3,-2,1),(4,2,1):}] , then show that A^(3)-23A-40I=O .

KUMAR PRAKASHAN-DETERMINANTS -Practice Work
  1. Find the inverse of each of the following matrices [{:(3,-10,-1),(-2...

    Text Solution

    |

  2. Find the inverse of each of the following matrices [{:(2,-1,1),(-1,2...

    Text Solution

    |

  3. For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I2=0. Hence, fin...

    Text Solution

    |

  4. If A^(-1)=[{:(-4,2),(3,-1):}]and B=[{:(0,3),(-2,5):}] then find (AB)^(...

    Text Solution

    |

  5. For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}]. Show that A^2-4A-5I=0 ...

    Text Solution

    |

  6. If A=[{:(3,1),(7,5):}] and A^2+xI=yA then find X and Y. Hence find A^(...

    Text Solution

    |

  7. If A=[{:(-1,2,0),(-1,1,1),(0,1,0):}] then show that A^(-1)=A^2

    Text Solution

    |

  8. If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I3=0. ...

    Text Solution

    |

  9. If A=[{:(2,3),(1,-4):}],B=[{:(1,-20),(-1,3):}] then verify (AB)^(-1)=B...

    Text Solution

    |

  10. A=[{:(2,-3),(4,6):}] verify (adjA)^(-1)=(adjA^(-1))

    Text Solution

    |

  11. Solve system of linear equations , using matrix method if exists 3x+...

    Text Solution

    |

  12. Solve system of linear equations , using matrix method if exists 3x-...

    Text Solution

    |

  13. Solve system of linear equations , using matrix method if exists 5x-...

    Text Solution

    |

  14. Solve system of linear equations , using matrix method if exists 5x+...

    Text Solution

    |

  15. Solve system of linear equations , using matrix method if exists x-y...

    Text Solution

    |

  16. Solve system of linear equations , using matrix method if exists 3x+...

    Text Solution

    |

  17. Solve system of linear equations , using matrix method if exists 2/x...

    Text Solution

    |

  18. Solve system of linear equations , using matrix method if exists x-2...

    Text Solution

    |

  19. Solve system of linear equations , using matrix method if exists 4x-...

    Text Solution

    |

  20. Solve system of linear equations , using matrix method if exists x-y...

    Text Solution

    |