Home
Class 12
MATHS
If A,B and C are angles of a triangle, t...

If A,B and C are angles of a triangle, then the determinant `|{:(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1):}|` is equal to`"........." `

A

0

B

-1

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Fillers)|10 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (True/False)|11 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Long Answer Type Questions)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

If A+B+C = 0 then prove that |{:(1,cosC,cosB),(cosC,1,cosA),(cosB,cosA,1):}|=0

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

The determinant |{:(sinA,cosA,sinA+cosB),(sinB,cosA,sin+cosB),(sinC,cosA,sinC+cosB):}| is equal to zero

The value of the determinant |{:(-a, b, c), (a,-b, c), (a, b,-c):}| is equal to.

If A,B and C are the angle of a triangle show that (i) |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0. (ii) |{:(-1+CcosB,cosC+cosB,cosB),(cosC+cosA,-1+cosA,cosB),(-1+cosB,-1+cosA,-1):}|=0.

If A,B and C are the angle of a non-right angled Delta ABC the value of |{:(tanA,1,1),(1,tanB,1),(1,1,tanC):}| is

If P,Q and R are the angles of a triangle the value of |{:(tanP,1,1),(1,tanQ,1),(1,1,tanR):}| is

If a,b,and c are the side of a triangle and A,B and C are the angles opposite to a,b,and c respectively, then Delta=|{:(a^(2),bsinA,CsinA),(bsinA,1,cosA),(CsinA,cos A,1):}| is independent of

If A, B and C are angles of a triangle such that angleA is obtuse, then show tan B tan C lt 1.

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)