Home
Class 12
MATHS
If |{:((1+x)^(17),(1+x)^(19),(1+x)^(23))...

If `|{:((1+x)^(17),(1+x)^(19),(1+x)^(23)),((1+x)^(23),(1+x)^(29),(1+x)^(34)),((1+x)^(41),(1+x)^(43),(1+x)^(47)):}|=Ax^2+Bx+C` then value of A = `"........."`

Text Solution

Verified by Experts

The correct Answer is:
A=0
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (True/False)|11 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-A)|5 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Objective type Questions)|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Statement-1 f(x) = |{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(1+x)^(22),(1+x)^(23)),((1+x)^(31),(1+x)^(32),(1+x)^(33)):}| the cofferent of x in f(x)=0 Statement -2 If P(x)= a_(0)+a_(1)x+a_(2)x^(2)+a_(2)x_(3) +cdots+a_(n)s^(n) then a_(1)=P'(0) , where dash denotes the differential coefficient.

Value of |{:(1+x_(1),1+x_(1)x,1+x_(1)x^(2)),(1+x_(2),1+x_(2)x,1+x_(2)x^(2)),(1+x_(3),1+x_(3)x,1+x_(3)x^(2)):}| depends upon

If a^(2)+b^(2)+c^(2) =-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}| the f(x) is a polynomial of degree

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

If 2^(x+1 ) = 3^(1-x) then find the value of x.

If (d)/(dx)((1+x^(4)+x^8)/(1+x^(2)+x^(4)))=ax^(3)+bx then …………….

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

int(e^(x)(1-nx^(n-1)-x^(2n)))/((1-x^(n)) sqrt(1-x^(2n)))d=....+c

If |{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos^(2)x):}|=a_(0)+a_(1)(x-1)+a_(2)(x-1)^(2)cdots The value of cos^(-1) (a_(1)) is

solve for x : (1) x^(2) + (1)/(x^(2))=(17)/(4) (2) (x+1)/(x)+(x)/(x+1)=(25)/(12) (3) x^(2)+(1)/(x^(2))+x+(1)/(x)-4=0