Home
Class 12
MATHS
The determinant |{:(sinA,cosA,sinA+cosB)...

The determinant `|{:(sinA,cosA,sinA+cosB),(sinB,cosA,sin+cosB),(sinC,cosA,sinC+cosB):}|` is equal to zero

Text Solution

Verified by Experts

The correct Answer is:
True
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-A)|5 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-B)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Fillers)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

If A,B and C are angles of a triangle, then the determinant |{:(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1):}| is equal to "........."

If A,B and C are the angle of a triangle show that (i) |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0. (ii) |{:(-1+CcosB,cosC+cosB,cosB),(cosC+cosA,-1+cosA,cosB),(-1+cosB,-1+cosA,-1):}|=0.

If A+B+C = 0 then prove that |{:(1,cosC,cosB),(cosC,1,cosA),(cosB,cosA,1):}|=0

Show that the DeltaABC is an isosceles triangle if the determinant Delta=|{:(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC):}|=0

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

If tanB= (nsinA cosA)/(1-ncos^2A) then tan(A +B) equals

Prove that, (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)((A-B)/(2))

For DeltaABC , sinA + sinB + sinC

Simply (sin75^(@)-sin15^(@))/(cos75^(@)+cos15^(@)) Prove that (a) (sin3A+sinA)SinA+(Cos3A-cosA)cosA=0 (c) (sin8thetacostheta-sin6 thetacos 3 theta)/(cos 2 theta cos theta-sin 3 thetasin4 theta)=tan 2 theta