Home
Class 12
MATHS
For the matrix A=[{:(1,1,1),(1,2,-3),(2,...

For the matrix `A=[{:(1,1,1),(1,2,-3),(2,-1,3):}]` Show that `A^3-6A^2+5A+11I=O`. Hence find `A^(-1)`

Answer

Step by step text solution for For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O. Hence find A^(-1) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-C)|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

For matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] . Prove that , A^(3)-6A^(2)+5A+11I=0 . Hence find A^(-1) using it .

If A=[{:(3,1),(-1,2):}] show that A^2-5A+7I=O . Hence find A^(-1)

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] Verify the result A^3-6A^2+9A-4I=O and hence find A^(-1)

If A=[{:(1,2,3),(3,-2,1),(4,2,1):}] , then show that A^(3)-23A-40I=O .

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] then , prove that A^(3)-6A^(2)+7A+2I=O .

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O .

Find A^(-1)" if "A=[{:(0,1,1),(1,0,1),(1,1,0):}] and show that A^(-1)=(A^2-3I)/2