Home
Class 11
MATHS
If A=[(1,2,1),(0,1,-1),(3,-1,1)] then A^...

If `A=[(1,2,1),(0,1,-1),(3,-1,1)]` then `A^(3)-3A^(2)-A+9I=`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|9 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,2),(2,1,0),(3,2,1)] then 3A^(-1)=

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-31=O

If A=[(0,1,-1),(2,1,3),(3,2,1)] then [A(adjA)A^(-1)]A=

If A=[(0,1,-2),(-1,0,3),(2,-3,0)] then A+A^(T)=

If A=[(2,2,1),(1,3,1),(1,2,2)] then A^(-1)+(A-5I)(A-I)^(2)=

If A={:[(1,0,-2),(-2,-1,2),(3,4,1)]:} then A^(-1) =

If A=[(1,0,0),(0,2,1),(1,0,3)] then (A-I)(A-2I)(A-3I)=

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0