Home
Class 11
MATHS
If |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)...

If `|{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}|` and `|{:(a,a^(2),1),(b,b^(2),1),(c,c^(2),1):}|!=0` then show that `abc=-1`.

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|9 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that abc=1

|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

If bc+ca+ab=18 , and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lambda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lambda is

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|