Home
Class 11
MATHS
If omega is complex cube root of 1 then ...

If `omega` is complex cube root of 1 then S.T `[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0`

Text Solution

Verified by Experts

The correct Answer is:
`=0`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|9 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

(1+omega-omega^(2))(1-omega+omega^(2))

If omega is a cube root of unit, then Delta=|(x+1,omega, omega^(2)),(omega, x+omega^(2),1),(omega^(2),1,x+omega)|=

find determinant of |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)|=

If omega is a complex cube root of unity, then 225+(3omega+8omega^(2))^(2)+(3omega^(2)+8omega)^(2)

If 1, omega, omega^(2) are the cube roots of unity then Delta=|(1,omega^(n),omega^(2n)),(omega^(n),omega^(2n),1),(omega^(2n),1,omega^(n))|=

If omega is a complex cube root of unity, then (x+1)(x+omega)(x-omega-1)

(1-omega+omega^(2))^(7)+(1+omega-omega^(2))^(7)

(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)

If omega is a complex cube root of unity, then sin[(omega^(10)+omega^(23))pi-(pi)/(4)]