Home
Class 11
MATHS
Prove that |{:((1+ax)^(2),(1+ay)^(2),(1+...

Prove that `|{:((1+ax)^(2),(1+ay)^(2),(1+az)^(2)),((1+bx)^(2),(1+by)^(2),(1+bz)^(2)),((1+cx)^(2),(1+cy)^(2),(1+cz)^(2)):}|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)`.

Text Solution

Verified by Experts

The correct Answer is:
`2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.2 (Very short answer questions)|10 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

|(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1)|=

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

If Tan^(-1)x+Tan^(-1)y+Tan^(-1)z=(pi)/2 and (x-y)^(2)+(y-z)^(2)+(z-x)^(2)=0 then x^(2)+y^(2)+z^(2)=

|(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(2))|=0,x!=y!=zimplies1+xyz=

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_3), z_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)+(z_(1)-4)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)+(z_(2)-4)^(2)=(x_(3)-2)^(3)+(y_(3)-3)^(2)+(z_(3)-4)^(2) then sum x_(1)+2sumy_(1)+3sum z_(1)=

If (1)/(x(x^(2)+a^(2)))=(A)/(x)+(Bx+C)/(x^(2)+a^(2)) then tan^(-1)(A/B)=

If Sin^(-1)x + Sin^(-1)y + Sin^(-1)z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2)y^(2)z^(2) = 2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) .