Home
Class 11
MATHS
If A=[(i,0),(0,i)], find A^(2)....

If `A=[(i,0),(0,i)]`, find `A^(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`[(-1,0),(0,-1)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.2 (Short answer questions)|8 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.3 (Very Short Answer Questions)|9 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.1 (Very short answer questions)|20 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A=[(i,0),(0,i)] then find A^(2) .

|(i,0),(0,i)|=

If A=[(i,0),(0,-i)] , then A A'=

If A=[(0,-i),(-i,0)] then A^(2)=

If A=[(x,1),(1,0)] and A^(2)=I then x=

If A=[(0,5),(0,0)] and f(x)=x+x^(2)+...+x^(2018) , then f(A)+I=

If A=((2,3),(0,4)) then A^(2)-5I=

Statement - I If A=[(x,1),(1,0)] is an Involutory matrix then x=0 Statement -II : A=[(0,-i),(-i,0)] and A^(2)=KI then K=-1 Which of the above Statement(s) is true ?

If A=[(0,i),(-i,0)] then "AA"^(T)=