Home
Class 11
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that (i) `|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|`
(ii) `|{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}|`
(iii) `|{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.4 (Long Answer Questions)|6 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.5 (Very Short Answer Questions)|3 Videos
  • MATRICES

    AAKASH SERIES|Exercise Exercise - 3.4 (Very Short Answer Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c^(2),ab)|=

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

If Delta_(1)=|(1,a,bc),(1,b,ca),(1,c,ab)|,Delta_(2)=|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))| then

Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,z^2),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}|

|(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

|(1,bc,bc(b+c)),(1,ca,ca(c+a)),(1,ab,ab(a+b))|=