Home
Class 11
MATHS
If A=[(1,3),(2,1)] then the determinant ...

If `A=[(1,3),(2,1)]` then the determinant of `A^(2)-2A` is

A

5

B

25

C

`-5`

D

`-25`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS-PRACTICE EXERCISE|39 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS- EXERCISE - I|15 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

A=[(-4,-1),(3,1)] then the determinant of the matrix (A^(2016)-2.A^(2-15)-A^(2014)) is

If A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] , then show that the ad joint of A = 3A' find A^(-1) .

Knowledge Check

  • If A=[(1,1,1),(1,2,-3),(2,-1,3)] then AdjA=

    A
    `[(3,-4,-5),(-9,1,-4),(-5,-3,1)]`
    B
    `[(3,4,5),(-9,1,-4),(5,-3,1)]`
    C
    `[(3,-4,-5),(-9,1,4),(-5,3,1)]`
    D
    `[(3,-9,-5),(-4,1,3),(-5,4,1)]`
  • If 3A=[(-1,2,2),(2,-1,2),(2,2,-1)] then

    A
    `"AA"^(T)=A^(T) A=I`
    B
    `"AA"^(T)=A^(T)A=O`
    C
    `"AA"^(T)=A^(T) A=-I`
    D
    none of these
  • If 3A=[(-1,2,2),(2,-1,2),(2,2,-1)] then

    A
    `A A^(T)=A^(T)A=I`
    B
    `A A^(T)=A^(T)A=-I`
    C
    `A A^(T)=A^(T)A=0`
    D
    `A A^(T)=A^(T)A=A`
  • Similar Questions

    Explore conceptually related problems

    If A = [(1,2,3),(3,2,1)] and B = [(3,2,1),(1,2,3)] , find 3B - 2A .

    IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

    IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1

    If A,B,C are the values of the determinants |(0,1,1),(1,0,1),(1,1,0)|,|(1,4,2),(2,-1,4),(-3,7,6)|,|(2,-1,4),(4,-3,1),(1,2,1)| then the ascending order of A,B,C is

    If A=[(1,1,1),(2,4,1),(2,3,1)],B=[(2,3),(3,4)] then the matrix BA is