Home
Class 11
MATHS
Assertion (A) : |{:(0,p-e,e-r),(e-p,0,r-...

Assertion (A) : `|{:(0,p-e,e-r),(e-p,0,r-p),(r-e,p-r,0):}|=0`
Reason (R) : The determinant of a skew symmetric matrix of odd order is zero.

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is not correct explanation of A

C

A is true R is false

D

A is false R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS-PRACTICE EXERCISE|39 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATRICES

    AAKASH SERIES|Exercise DETERMINANTS- EXERCISE - I|15 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

P.T the determinant of skew symmetric matrix of order 3 is zero.

|(0,p-q,p-r),(q-p,0,q-r),(r-p,r-q,0)|=

Assertion (A) : If A=[(x,3,-10),(-3,y,9),(10,-9,z)] is a skew symmetric matrix then Tr(A)=0 Reason (R) : If A is a skew symmetric then all the elements in a principle diagonal are equal to zero.

|(a,p,q),(0,b,r),(0,0,c)|

If A = |{:(p,q,r),(r,p,q),(q,r,p):}|and A A ^(T) = I "then" p^(3) + q^(3) + r^(3) =

Assertion (A) : Lt_(x to0) (x)/(1+e^((1)/(x)))=0 Reason(R) : As x to 0, e^(1//x) to0 and x to 0+,e^(-1//x) to 0

Assertion (A) : f(x) = (1)/( 1 + e^(1//e))(x ne 0) " and " f(0) = 0 is right continuous at x = 0 Reason (R) : underset(x to 0+)(Lt ) (1)/(1 + e^(1//x)) = 0 The correct answer is

If p(q-r) x^2 +q(r-p) x+r(p-q) =0 has equal roots then 2/q =

Assertion (A) : Chips packets are filled with Vitamin 'C' and Vitamin 'E'. Reason (R) : Vitaminc 'C' and Vitamin 'E' prevents oxidation.

P(bar E) = 0.555 Then find the value of P(E)

AAKASH SERIES-MATRICES -DETERMINANTS- EXERCISE - II
  1. If y=cosx,y(n)=(d^(n)(cosx))/(dx^(n)) then |{:(y(4),y(5),y(6)),(y(7),y...

    Text Solution

    |

  2. If |{:(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB):}|...

    Text Solution

    |

  3. A=[(1, cos (beta-alpha),cos(gamma-alpha)),(cos (alpha-beta), 1, cos(ga...

    Text Solution

    |

  4. If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(...

    Text Solution

    |

  5. If a!=p,b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 then the value of P/...

    Text Solution

    |

  6. If A is a 3xx3 matrix and det(3A)=k(detA) then k=

    Text Solution

    |

  7. A and B be 3xx3 martrices. Then AB=0 implies

    Text Solution

    |

  8. If x,y,z are in A.P. then the value of |{:(a+2,a+3,a+3x),(a+3,a+4,a+2y...

    Text Solution

    |

  9. |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(2))|=0,x!=y!=zimpli...

    Text Solution

    |

  10. If f(x)=|(2cosx,1,0),(x-pi//2,2cosx,1),(0,1,2cosx)| then (df)/(dx) at ...

    Text Solution

    |

  11. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|, Delta(2)=|(x,b),(a,x)| then

    Text Solution

    |

  12. Statment - I : |{:(0,ab^(2),ac^(2)),(a^(2)b,0,bc^(2)),(a^(2)c,b^(2)c,0...

    Text Solution

    |

  13. Arrange the following matrices in ascending order of their determinant...

    Text Solution

    |

  14. Match the following from List - I to List - II {:("List-I","List-II"...

    Text Solution

    |

  15. Assertion (A) : |{:(0,p-e,e-r),(e-p,0,r-p),(r-e,p-r,0):}|=0 Reason ...

    Text Solution

    |

  16. |{:(2013^(2),2014^(2),2015^(2)),(2016^(2),2017^(2),2018^(2)),(2019^(2)...

    Text Solution

    |

  17. If ainR then |{:(a^(2),(a+1)^(2),(a+2)^(2)),((a+1)^(2),(a+2)^(2),(a+3)...

    Text Solution

    |

  18. |(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2))|=

    Text Solution

    |

  19. A(x)=|{:(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1):}|rArrint(...

    Text Solution

    |

  20. If a, b,c are distinct positive real numbers, then the vlaue of the de...

    Text Solution

    |