Home
Class 11
MATHS
If the matrix A is such that A[(-1,2),(3...

If the matrix A is such that `A[(-1,2),(3,1)]=[(-4,1),(7,7)]` then `A=`

A

`[(1,1),(2,-3)]`

B

`[(-4,1),(7,7)]`

C

`[(1,-1),(2,3)]`

D

`[(-1,1),(2,3)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- PRACTICE EXERCISE|13 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - EXERCISE - I|24 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

Find the matrix X so that X[(1,2,3),(4,5,6)]=[(-7,-8,-9),(2,4,6)]

If A=[(1,4,2),(2,-1,4),(-3,7,-6)] then A has

|(1,4,2),(2,-1,4),(-3,7,-6)|=

If the matrix A=[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,alpha)] is of rank 3, then alpha=

The inverse of the matrix [(7,-3,3),(-1,1,0),(-1,0,-1)] is

If A=[(1,1,1),(2,4,1),(2,3,1)],B=[(2,3),(3,4)] then the matrix BA is

For the matrix A={:[(3,-3,4),(2,-3,4),(0,-1,1)]:}A^(-1)=

The cofactor of 7 and 5 in the matrix [(1,2,3),(4,-1,7),(2,4,5)] are

AAKASH SERIES-MATRICES -INVERSE OF A MATRIX- EXERCISE - II
  1. If the matrix A is such that A[(-1,2),(3,1)]=[(-4,1),(7,7)] then A=

    Text Solution

    |

  2. If [(1,-tan theta),( tan theta,1)][(1,tan theta),(-tan theta, 1)]^-1=[...

    Text Solution

    |

  3. If A=[(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1)] then ("Adj...

    Text Solution

    |

  4. If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] and G(x)=[(cosx,0,sinx)...

    Text Solution

    |

  5. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] and "Adj A"=A=xA^(T) then x =

    Text Solution

    |

  6. If A is a square matrix such that A(AdjA)=((4,0,0),(0,4,0),(0,0,4)) th...

    Text Solution

    |

  7. Let A=[(-1,1,1),(1,-1,1),(1,1,-1)] then |"Adj (Adj A)"|=

    Text Solution

    |

  8. If A=[(0,1,-1),(2,1,3),(3,2,1)] then [A(adjA)A^(-1)]A=

    Text Solution

    |

  9. If A=[(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))] the...

    Text Solution

    |

  10. If 3A=[(1,2,2),(2,1,-2),(-2,2,-1)] then A^(-1)=

    Text Solution

    |

  11. If A is non - singular and A^(2)-5A+7I=0 then I =

    Text Solution

    |

  12. If A is non Singular and (A-2I)(A-4I)=0 then 1/6A+4/3A^(-1)=

    Text Solution

    |

  13. A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

    Text Solution

    |

  14. If A!=A^(2)=I then |I+A|=

    Text Solution

    |

  15. If A is a 3xx3 matrix and B is its Adjoint matrix. If the determinent ...

    Text Solution

    |

  16. If A is 4xx4 matrix and |2A|=64,B="Adj A" then |"Adj B"|=

    Text Solution

    |

  17. If A!=I is an idempotent matrix, then A is a

    Text Solution

    |

  18. If A is an orthogonal matrix then |A| is

    Text Solution

    |

  19. If A and B are two square matrices such that B=-A^(-1)BA then (A+B)^(2...

    Text Solution

    |

  20. The value of a third order determinant is 11 then the value of the squ...

    Text Solution

    |