Home
Class 11
MATHS
If A is non - singular and A^(2)-5A+7I=0...

If A is non - singular and `A^(2)-5A+7I=0` then I =

A

`1/7A-5/7A^(-1)`

B

`1/7A+5/7A^(-1)`

C

`1/5A+7/5A^(-1)`

D

`1/5A-A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- PRACTICE EXERCISE|13 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - EXERCISE - I|24 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A is non Singular and (A-2I)(A-4I)=0 then 1/6A+4/3A^(-1)=

If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|) .

If A is a non singular square matrix, then the false statement among the following is

Let A be 3xx3 matrix such A^(2)-5A+7I=0 statement 1 : A^(-1)=(1)/(7)(5I-A) Statement 2 : The polynomial A^(3)-2A^(2)-3A+I can be reduce to 5 (A-4I) then

Show that the matrix A = [(1,2,1),(3,2,3),(1,1,2)] is non-singular and find A^(-1) .

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular and find A^-1 .

AAKASH SERIES-MATRICES -INVERSE OF A MATRIX- EXERCISE - II
  1. If A=[(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))] the...

    Text Solution

    |

  2. If 3A=[(1,2,2),(2,1,-2),(-2,2,-1)] then A^(-1)=

    Text Solution

    |

  3. If A is non - singular and A^(2)-5A+7I=0 then I =

    Text Solution

    |

  4. If A is non Singular and (A-2I)(A-4I)=0 then 1/6A+4/3A^(-1)=

    Text Solution

    |

  5. A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

    Text Solution

    |

  6. If A!=A^(2)=I then |I+A|=

    Text Solution

    |

  7. If A is a 3xx3 matrix and B is its Adjoint matrix. If the determinent ...

    Text Solution

    |

  8. If A is 4xx4 matrix and |2A|=64,B="Adj A" then |"Adj B"|=

    Text Solution

    |

  9. If A!=I is an idempotent matrix, then A is a

    Text Solution

    |

  10. If A is an orthogonal matrix then |A| is

    Text Solution

    |

  11. If A and B are two square matrices such that B=-A^(-1)BA then (A+B)^(2...

    Text Solution

    |

  12. The value of a third order determinant is 11 then the value of the squ...

    Text Solution

    |

  13. A and B are square matrices of order 3xx3, A is on orthogonal matrix a...

    Text Solution

    |

  14. Which of the following statements is false:

    Text Solution

    |

  15. Let A be 2xx2 matrix. Statement : adj(adjA)=A Statement -2: |adjA|=|A|

    Text Solution

    |

  16. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a matr...

    Text Solution

    |

  17. If A is any square matrix of order 'n' Observe the following list {:...

    Text Solution

    |

  18. Statement 1 : If A is nxxn matrix then |"adj (adj(adjA))|=|A|^((n-1)^...

    Text Solution

    |

  19. The element of third row second column of the inverse of A=[(2,-4,-2),...

    Text Solution

    |

  20. If |{:(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3)):}|=5, then th...

    Text Solution

    |