Home
Class 11
MATHS
If A and B are two square matrices such ...

If A and B are two square matrices such that `B=-A^(-1)BA` then `(A+B)^(2)=`

A

0

B

`A^(2)+B^(2)`

C

`A^(2)+2AB+B^(2)`

D

`A+B`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- PRACTICE EXERCISE|13 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - EXERCISE - I|24 Videos
  • MATRICES

    AAKASH SERIES|Exercise INVERSE OF A MATRIX- EXERCISE - I|21 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A,b are two square matrices such that AB=A,BA=B then A,B are

If A and B are matrices such that AB = O then

If A, B are two square matrices such that AB=B, BA=A and n in N then (A+B)^(n)=

If A and B are two symmetric matrices then AB + BA is

If A and B are square matrices of size nxxn such that A^(2)-B^(2)=(A-B)(A+B) , then which of the following will be always true?

If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB^(n)=B^(n)A . Further, prove that (AB)^(n)=A^(n)B^(n) for all n in N .

If A and B are square matrices of order 3 such that detA=-1 , detB=3 then the determinant of 3AB is equal to

If A and B are symmetric matrices then ABA is

If A and B are two matrices such that AB and A+B are both defined, then A and B are

AAKASH SERIES-MATRICES -INVERSE OF A MATRIX- EXERCISE - II
  1. If 3A=[(1,2,2),(2,1,-2),(-2,2,-1)] then A^(-1)=

    Text Solution

    |

  2. If A is non - singular and A^(2)-5A+7I=0 then I =

    Text Solution

    |

  3. If A is non Singular and (A-2I)(A-4I)=0 then 1/6A+4/3A^(-1)=

    Text Solution

    |

  4. A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

    Text Solution

    |

  5. If A!=A^(2)=I then |I+A|=

    Text Solution

    |

  6. If A is a 3xx3 matrix and B is its Adjoint matrix. If the determinent ...

    Text Solution

    |

  7. If A is 4xx4 matrix and |2A|=64,B="Adj A" then |"Adj B"|=

    Text Solution

    |

  8. If A!=I is an idempotent matrix, then A is a

    Text Solution

    |

  9. If A is an orthogonal matrix then |A| is

    Text Solution

    |

  10. If A and B are two square matrices such that B=-A^(-1)BA then (A+B)^(2...

    Text Solution

    |

  11. The value of a third order determinant is 11 then the value of the squ...

    Text Solution

    |

  12. A and B are square matrices of order 3xx3, A is on orthogonal matrix a...

    Text Solution

    |

  13. Which of the following statements is false:

    Text Solution

    |

  14. Let A be 2xx2 matrix. Statement : adj(adjA)=A Statement -2: |adjA|=|A|

    Text Solution

    |

  15. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a matr...

    Text Solution

    |

  16. If A is any square matrix of order 'n' Observe the following list {:...

    Text Solution

    |

  17. Statement 1 : If A is nxxn matrix then |"adj (adj(adjA))|=|A|^((n-1)^...

    Text Solution

    |

  18. The element of third row second column of the inverse of A=[(2,-4,-2),...

    Text Solution

    |

  19. If |{:(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3)):}|=5, then th...

    Text Solution

    |

  20. If P=[(1, alpha, 3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix A...

    Text Solution

    |