A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
MATRICES
AAKASH SERIES|Exercise LINEAR EQUATIONS - EXERCISE - II|22 VideosMATRICES
AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 VideosMATRICES
AAKASH SERIES|Exercise INVERSE OF A MATRIX- PRACTICE EXERCISE|13 VideosMATHEMATICAL INDUCTION
AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 VideosMAXIMA & MINIMA
AAKASH SERIES|Exercise EXERCISE-III|35 Videos
Similar Questions
Explore conceptually related problems
AAKASH SERIES-MATRICES -LINEAR EQUATIONS - EXERCISE - I
- The solution of 2x+y+z=1,x-2y-3z=1,3x+2y+4z=5 is
Text Solution
|
- The solution of the system of equations whose Augmented matrix is [(1,...
Text Solution
|
- The equation 2x+y-4z=0, x-2y+3z=0 , x-y+z=0 have
Text Solution
|
- The number of nontrivial solutions of the system: x-y+z=0, x+2y=0, 2x+...
Text Solution
|
- The equations x+y+z=0,2x-y-3z=0,3x-5y+4z=0 have
Text Solution
|
- If the system of equations 3x-2y+z=0, lamdax-14y+15z=0,x+2y-3z=0 have ...
Text Solution
|
- If the system of equations 2x+3ky+(3k+4)z=0,x+(k+4)y+(4k+2)z=0,x+2(k+4...
Text Solution
|
- If the system of equations 3x-2y+z=0, lamdax-14y+15z=0,x+2y-3z=0 have ...
Text Solution
|
- If x ^(2) + y ^(2) + z ^(2)ne 0, x= cy + bz, y= az +cx, and z= bx + ay...
Text Solution
|
- The number of Solutions of the system of equations 2x + y -z = 7, x - ...
Text Solution
|
- For the equations x+2y+3z=1, 2x+y+3z=2, 5x+5y+9z=4
Text Solution
|
- The equation x-y+2z=4,3x+y+4z=6, x+y+z=1 have
Text Solution
|
- The equations x+4y-2z=3,3x+y+5z=7,2x+3y+z=5 have
Text Solution
|
- The system of equations 2x+6y+11=0,6y-18z+1=0,6x+20y-6z+3=0
Text Solution
|
- If the system of equations x+y+z=6, x+2y+lamdaz=0, x+2y+3z=10 has no s...
Text Solution
|
- The system of equations 4x+y+2z=5, x-5y+3z=10, 9x-3y+7z=20 has
Text Solution
|
- The rank of [(1,0),(0,0)] is
Text Solution
|
- The rank of [(1,0,0),(0,1,0),(0,0,1)] is
Text Solution
|
- The rank of [(1,-1,1),(1,1,-1),(-1,1,1)] is
Text Solution
|
- Find the rank of the matrix [(1,4,-1),(2,3,0),(0,1,2)]
Text Solution
|