Home
Class 11
MATHS
Let bara,barb and barc be non coplanar ...

Let `bara,barb` and `barc` be non coplanar vectors if
`[bara+2barb 2barb+barc 5barc+bara]=lamda[bara barb barc]` then find `lamda`

Text Solution

Verified by Experts

The correct Answer is:
12
Promotional Banner

Topper's Solved these Questions

  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 4.1 (SHORT ANSWER QUESTIONS)|25 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 4.1 (LONG ANSWER QUESTIONS)|14 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos
  • PAIR OF STRAIGHT LINES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Let bara,barb and barc be non coplanar vectors if [2bara-barb+3barc,bara+barb-2barc,bara+barb-3barc]=lamda[bara barb barc] then find lamda .

[bara barb barc]+[bara barc barb] =

If bara,barb,barc are unit coplanar vectors, then find [ 2bara-barb 2barb-barc 2barc -bara] .

If bara,barb,barc are non-coplanar vectors and (bara+2barb+barc).(bara-barb)xx(bara-barb-barc)=lamda[barabarbbarc] then lamda =

If bara. barb = barb. barc = barc . bara = 0 then [bara barb barc] =

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that (bara+barb+barc).(bara^(1)+barb^(1)+barc^(1))=3

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that bara.bara^(1)=barb.barb^(1)=barc.barc^(1)=1

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that bara.barb^(1)=bara.barc^(1)=barb.bara^(1)=barb.barc^(1)=barc.bara^(1)=barc.barb^(1)=0

i) Let bara, barb and barc be non - coplanar vectors and baralpha=bara+2barb+3barc,barbeta=2bara+barb-2barc and bargamma=3bara-7barc , then find [baralphabarbetabargamma] (ii) If bara,barbbarc are non coplanar vectors, then find ((bara+2barb-barc).[(bara-barb)xx(bara-barb-barc)])/([barabarbbarc])

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([barabarbbarc]),barb^(1)=(barcxxbara)/([barabarbbarc]) and barc^(1)=(baraxxbarb)/([barabarbbarc]) then prove that (bara+barb).bara^(1)+(barb+barc).barb^(1)+(barc+bara).barc^(1)=3