Home
Class 11
MATHS
Show that (baraxx(barbxxbarc))xxbarc=(ba...

Show that `(baraxx(barbxxbarc))xxbarc=(bara.barc)(barbxxbarc)` and `((baraxxbarb).(baraxxbarc)+bara.barb)(bara.barc)=(bara.bara)(barb.barc)`

Promotional Banner

Topper's Solved these Questions

  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|6 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE-I|40 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 4.1 (SHORT ANSWER QUESTIONS)|25 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos
  • PAIR OF STRAIGHT LINES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Show that i) baraxx(baraxx(baraxxbarb))=(bara.bara)(barbxxbara) ii) {(baraxxbarb)xx(baraxxbarc)}.bard=(bara.bard)[bara barb barc]

If [baraxx(barbxxbarc)]xxbarc=(bara·barc)barR then barR=

Show that bara.[(barb+barc)xx(bara+barb+barc)]=0

Show that (bara+barb).(barb+barc)xx(barc+bara)=2[barabarbbarc]

If [bara barb barc ] = 1 then show that (bara.bara)(barbxxbarc)+ (bara.barb)(barcxxbara)+(bara.barc)(baraxxbarb)=bara .

If [veca vecb vecc]=1 then (bara.(barbxxbarc))/((barcxxbara).barb)+(barb.(barcxxbara))/((baraxxbarb).barc)+(barc.(baraxxbarb))/((barbxxbarc).bara)=

(bara+2barb-barc).(bara-barb)xx(bara-barb-barc)=

[(baraxxbarb)xx(baraxxbarc)].bard=k[bara barb barc] then k=

barc.(barb+barc)xx(bara+barb+barc)=