Home
Class 11
MATHS
baraxx{baraxx(baraxxbarb)}=...

`baraxx{baraxx(baraxxbarb)}`=

A

`(bara,barb)(baraxxbarb)`

B

`(bara.bara)(baraxxbarb)`

C

`(bara.bara)(barbxxbara)`

D

`(barb.barb)(baraxxbarb)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE -II|100 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|6 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos
  • PAIR OF STRAIGHT LINES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

If bara,barc,bard are coplaner then the value of (bard+bara).[baraxx{barbxx(barcxxbard)}]=

[ (baraxxbarb)xx(barbxxbarc)(barbxxbarc)xx(barcxxbara)(barcxxbara)xx(baraxxbarb)] =

If bara,barb,barc are coplanar vectors then (baraxxbarb)xx(barbxxbarc)+(barbxxbarc)xx(barcxxbara)+(barcxxbara)xx(baraxxbarb)=

If bara, barb, barc are non-coplanar, non zero vectors then (baraxxbarb)xx(baraxxbarc)+(barb xxbarc)xx(barbxxbara)+ (barcxxbara)xx(barcxxbarb) =

(baraxxbarb)xx(barbxxbarc)=

If bara, barb, barc are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4 cu. units then (bara+barb).(barbxxbarc)+(barb+barc).(barcxxbara)+(barcxxbara).(baraxxbarb) =

baraxx(barbxxbarc)+barbxx(barcxxbara)+barcxx(baraxxbarb)=

If (baraxxbarb)xx(barcxxbard)=lamdabarc+μbard then lamda,mu=

If (baraxxbarb)xx(barcxxbard)=[barabarbbard]barc +kbard then k =

[(baraxxbarb)xx(baraxxbarc)].bard=k[bara barb barc] then k=

AAKASH SERIES-MULTIPLE PRODUCT OF VECTORS-EXERCISE-I
  1. The volume of a parallelopiped with coterminous edges bari+xbarj-x^(2)...

    Text Solution

    |

  2. If the volume of tetrahedron with edges bari+barj-bark,bari+abarj+bark...

    Text Solution

    |

  3. The volume of (in cubic units) of the tetrahedron with edges I + j + k...

    Text Solution

    |

  4. If the vertices of a tetrahedron have the P.V.'s bar0, bari + barj, 2b...

    Text Solution

    |

  5. bari,barj,bark is a right handed system of vectors and bara=2bari-25ba...

    Text Solution

    |

  6. baraxx(barbxxbarc)+barbxx(barcxxbara)+barcxx(baraxxbarb)=

    Text Solution

    |

  7. baraxx(barbxxbarc) is parallel to barb then

    Text Solution

    |

  8. baraxx{baraxx(baraxxbarb)}=

    Text Solution

    |

  9. If bara,barb,barc are any three vectors such that (bara+ barb) . barc ...

    Text Solution

    |

  10. If bara, barb, barc are any three vectors then (baraxxbarb)xxbarc is a...

    Text Solution

    |

  11. (barbxxbarc)xx(barcxxbara)=

    Text Solution

    |

  12. (baraxxbarb)xx(barbxxbarc)=

    Text Solution

    |

  13. (baraxxbari)xxbari +(baraxxbarj)xxbarj+(baraxxbark)xxbark=

    Text Solution

    |

  14. If bara=2bari+3barj-bark,barb=-bari+2barj-4bark, barc=bari+barj+bark t...

    Text Solution

    |

  15. If bara and barb are unit vectors, then the vector ( bara + barb) xx (...

    Text Solution

    |

  16. If bara= 2bari+barj-3bark, barb = bari-2barj+bark, barc = -bari+barj-4...

    Text Solution

    |

  17. If (baraxxbarb)xx(barcxxbard)=lamdabarc+μbard then lamda,mu=

    Text Solution

    |

  18. [(baraxxbarb)xx(baraxxbarc)].bard=k[bara barb barc] then k=

    Text Solution

    |

  19. If bara,barb,barc,bard are unit co-planar vectors then abs((baraxxbarb...

    Text Solution

    |

  20. If bara, barb, barc, bard, bare are co-planar vectors then {(baraxxbar...

    Text Solution

    |