Home
Class 11
MATHS
If bara,barb are non-zero and non-collin...

If `bara,barb` are non-zero and non-collinear vectors then `[bara barb bari]bari+[bara barb barj]barj+[bara barb bark]bark`=

A

`baraxxbarb`

B

`barbxxbara`

C

0

D

`bara.barb`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise EXERCISE-I|40 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos
  • PAIR OF STRAIGHT LINES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

If bara, barb, barc are non-coplanar vectors, then |(bara*bara,barb*barb,bara*barc),(barb*bara,barb*barb,barb*barc),(barc*bara,barc*barb,barc*barc)|=

If bara,barb,barc are non-coplanar vectors and (bara+2barb+barc).(bara-barb)xx(bara-barb-barc)=lamda[barabarbbarc] then lamda =

Let bara,barb and barc be non coplanar vectors if [2bara-barb+3barc,bara+barb-2barc,bara+barb-3barc]=lamda[bara barb barc] then find lamda .

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that (bara+barb+barc).(bara^(1)+barb^(1)+barc^(1))=3

Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/([bara barb barc]),barb^(1)=(barcxxbara)/([bara barb barc]) and barc^(1)=(baraxxbarb)/([bara barb barc]) then prove that bara.bara^(1)=barb.barb^(1)=barc.barc^(1)=1

If bara,barb,barc " are three non zero vectors, and " bara.barb = bara.barc rArr

Let bara and barb be two non-collinear unit vectors. If baru=bara-(bara.barb)barb and barv=bara xx barb , then |barv|=

Let bara and barb be non-zero, non collinear vectors. If abs(bara+barb) = abs(bara-barb) " find the angle between " bara and barb .

AAKASH SERIES-MULTIPLE PRODUCT OF VECTORS-EXERCISE -II
  1. The volume of the triangular pyramid with vertices A(2, 2, 2), B(4, 3,...

    Text Solution

    |

  2. If bara, barb, barc are non-coplanar, nonzero vectors and barr is any ...

    Text Solution

    |

  3. If bara,barb are non-zero and non-collinear vectors then [bara barb ba...

    Text Solution

    |

  4. Let barr be a vector perpendicular to bara + barb + barc . If barr=l(b...

    Text Solution

    |

  5. Let bara,barb are two unit vectors such that bara.barb=0. If barc=xbar...

    Text Solution

    |

  6. If bara, barb, barc are non - coplanar vectors and lamda is a real num...

    Text Solution

    |

  7. If bar(a), bar(b), bar(c) are non coplanar vectors and lambda is a rea...

    Text Solution

    |

  8. If bara, barb, barc are three non-coplanar vectors, barp=(barbxxbarc...

    Text Solution

    |

  9. If bar(a^(1)),bar(b^(1)),bar(c^(1)) represents the reciprocal system o...

    Text Solution

    |

  10. Let bara ,barb,barc be non coplanar vectors and bara^(1)=(barbxxbarc)/...

    Text Solution

    |

  11. bara^(1)xxbarb^(1)+barb^(1)xxbarc^(1)+barc^(1)xxbara^(1)=

    Text Solution

    |

  12. If barr is any vector then barr =

    Text Solution

    |

  13. Arrange the following in the descending order of magnitude (A) [I...

    Text Solution

    |

  14. A : If bara, barb, barc form a left handed orthogonal system such that...

    Text Solution

    |

  15. If bari,barj,bark are orthogonal unit vector triad, then bari xx(barrx...

    Text Solution

    |

  16. bari xx [(baraxxbarb)xxbari] +barj xx [(baraxx barb)x barj] + bark xx ...

    Text Solution

    |

  17. bara, barb, barc are three unit vectors, barb is not parallel to barc ...

    Text Solution

    |

  18. Let bara,barb and barc be non-zero vectors such that (baraxxbarb)xxbar...

    Text Solution

    |

  19. If bara is a unit vector then baraxx{baraxx(baraxxbarb)}=

    Text Solution

    |

  20. baraxx(barbxxbarc)+barbxx(barcxxbara)+barcxx(baraxxbarb)=

    Text Solution

    |