Home
Class 11
MATHS
The solution of 4 sin^(2) x + tan^(2) x ...

The solution of `4 sin^(2) x + tan^(2) x + cosec^(2) x + cot^(2) x - 6 = 0 " is " (n in Z)`

A

`n pi pm (pi)/(4)`

B

`2 n pi pm (pi)/(4)`

C

`n pi + (pi)/(3)`

D

`n pi - (pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(2)x + cot^(2) x = 2 , then x =

The solution of e^(x) cot y dx + (1- e^(x)) cosec^(2) y dy = 0 is

{:(" Column- I "," Column-II "),("A) If " ((sin theta)/(sin phi))^(2) = (tan theta)/(tan phi)=3 "then the value of " theta and phi " are ","(p) Infinite number of solutions "),("B) The number of solutions of " (sin ^(2) x + cos ^(4) x)/(cos^(2) x + sin^(4) x ) = 1 ,"q) " theta = n pi pm (pi)/(3)"," phi = n pi pm (pi)/(6) ),("(c) Solution of " cot 2 theta = cot ^(2) theta - tan ^(2) theta ,"r) " n pi pm (pi)/(4)):}

The number of solutions of sin^(2) x cos^(2) x = 1 + cos^(2) x sin^(4) x in the inverval [0, 2 pi] is

The number of solutions of the equation cos 6 x + tan^(2) x + cos 6 x tan ^(2) x = 1 , in the interval [0, 2 pi] is

If cot(x//2) - cosec (x //2) = cot x then x =