Home
Class 11
MATHS
The value of cos y cos ((pi)/(2) - x) - ...

The value of cos y cos `((pi)/(2) - x) - cos ((pi)/(2) - y) cos x + sin y cos ((pi)/(2) - x) + cos x sin ((pi)/(2) - y)` is zero if

A

`x = 0`

B

y = 0

C

x = y

D

`n pi + y - (pi)/(4) (n in Z)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The extreme values of cos x cos((2pi)/(3)+x)cos((2pi)/(3)-x) is

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)

cos ((3pi )/( 2 ) + x) cos (2pi + x) [cot ((3pi)/( 2)- x ) + cot (2pi +x) ]=1

( sin x - cos x)^(2) + cos^(2) ((pi)/(4) - x) in

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

cos^(2)""((pi)/(4) +x ) - sin^(2) ""((pi)/4- x ) =

If x=y cos((2pi)/(3))=z cos ((4pi)/(3)) then xy+yz+zx=

(sin x - sin y)/( cos x + cos y) = tan ""(x-y)/(2)