Home
Class 11
MATHS
The number of all possible values of the...

The number of all possible values of `theta` where `0 lt theta lt pi` for which the system of equations `(y+z)cos 3 theta=(xyz)sin 3theta, x sin 3 theta=(2cos 3theta)/y+(2sin 3 theta)/y, (xyz) sin 3theta=(y+2z)cos 3 theta+y sin 3 theta` has a solution `(x_(0),y_(0),z_(0))` with `y_(0)z_(0)!=0` is

A

1

B

0

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

( cos 3 theta - sin 3 theta )/( cos theta+ sin theta ) =

( sin 3 theta )/( sin theta ) -(cos 3 theta )/( cos theta )=

If x cos theta + y sin theta = a , x sin theta - y cos theta = b then

If 0 lt theta lt pi/2 , the solution of the equation sin theta - 3 sin 2 theta + sin 3 theta = cos theta - 3 cos 2 theta + cos 3 theta is

(sin 3 thea - sin theta sin ^(2) (2 theta ))/( sin theta + sin 2 theta cos theta ) = cos x implies x =

If sin 2 theta+cos theta =0 then theta=

If 1+sin^(2)theta = 3 sin theta cos theta , then theta =

x= tan 27 theta - tan theta , y=(sin theta )/( cos 3 theta )+(sin 3 theta )/(cos 9theta)+(sin9 theta )/(cos 27 theta ) , if

The value of (2 (sin2 theta-2 cos^(2)theta-1))/(cos theta-sin theta-cos 3 theta +sin 3 theta)=