Home
Class 11
MATHS
If 0 le x le 2 pi and |cos x| le sin x,...

If `0 le x le 2 pi and |cos x| le sin x`, then

A

the set of all values of x is `[(pi)/(4), (3 pi)/(4)]`

B

the number of solutions that are integral multiple of `(pi)/(4)` is four

C

the sum of the largest and the smallest solution is `pi`

D

the set of all values of x is ` x in [(pi)/(4), (pi)/(2)) cup ((pi)/(2), (3 pi)/(4)]`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = {x in, R//|sqrt3 cos x - sin x| ge 2,0 le x le 2pi}.If x _(1) in A, x_(2) in A, then (x _(1))/(x _(2))=

If 0 le x le 2 pi , then the number of solution of 3 (sin x + cos x) - 2 (sin^(3)x + cos^(3) x) = 8 is

If 0 le theta le pi//2 then

Find the values of cos(2cos^(-1)x+sin^(-1)x) at x = 1/5, where 0 le cos^(-1)x le pi and -pi//2 le sin^(-1)x le pi//2 .

f(x) = {{:(x + asqrt(2) sinx " if "0 le x lt pi//4),(2x cot x + b " if " pi//4 le x le pi//2),(a cos 2x - b sin x " if " pi//2 lt x le pi):} f(x) is continuous on [0, pi ] then (a,b) =

Given A={x:(pi)/(6) le x le (pi)/(3)} and f(x)=cosx-x(1+x) , then f(A)=