Home
Class 11
MATHS
The total number of ordered pairs (x,y) ...

The total number of ordered pairs (x,y) satisfying `|x|+|y|=4, sin((pi)x^(2)//3)=1` is equal to

A

2

B

3

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y in [0, 2 pi] , then the total number of ordered pairs (x, y) satisfying the equation sinx cos y = 1 is

Find the number of ordered pairs (x,y) satisfying the equations sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-(pi)/3

The number of ordered pairs (a,x) satisfying the equation sec^(2)(a+2)x+a^(2)-1=0, -pilt x lt pi is

For 0lt, y lt pi , the number of ordered pairs (x,y) satisfying the system of equations cot^(2)(x'-y)-(1+sqrt(3))cot(x-y)=sqrt(3)=0 and cosy=(sqrt(3))/2 is

If x,y in (0,2pi) , then the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)+sec^(2)y-6cosx-4secy+5=0 is

The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=(pi)/2 is

The number of integer x satisfying sin^(-1)abs(x-2)+cos^(-1)(1-abs(3-x))=pi/2 is

The number of values of x satisfying the equation 2sin^(2)x+4cos^(2)x=3 in the interval (0,2pi) is