Home
Class 11
MATHS
The least positive value of x satisfying...

The least positive value of x satisfying `(sin^(2) 2 x + 4 sin^(4) x - 4 sin^(2) x cos ^(2) x)/(4 - sin ^(2) 2 x - 4 sin^(2) x)= (1)/(9)` is

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(2 pi)/(3)`

D

`(5 pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

All the values of x satisfying sin 2x + sin 4x = 2 sin 3x are

2(sin^(6) x + cos^(6) x ) -3(sin^(4) x + cos^(4) x ) +1=

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

sin ^(2) 6x - sin ^(2) 4x = sin 2x sin 10x

int (1)/(sqrt(sin^(2) x cos^(2) x - sin^(4) x)) dx =

All the values of x satisfying sin2x+sin4x=2sin3x are

If y=1+4sin^2 x cos^(2) x , then

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

( sin x - cos x)^(2) + cos^(2) ((pi)/(4) - x) in