Home
Class 11
MATHS
Number of roots of cos^(2) x + (sqrt(3) ...

Number of roots of `cos^(2) x + (sqrt(3) + 1)/( 2) sin x - (sqrt(3))/(4) - 1 =0 ` which lie in the interval `[- pi, pi]` is

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of cos^(2) x + (sqrt(3 + 1))/( 2) si x - (sqrt( 3))/( 4) - 1 = 0 which lie in the interval [ - pi, pi] is

If 4sin^(2)x-2 (1+sqrt(3))sin x + sqrt(3)=0 then theta =

If sqrt(2) sin^2 x + (3sqrt(2) + 1) sin x + 3 gt 0 and x^2 - 7x + 10 lt 0 , then x lies in the interval

Solve the equation cot^(2) x - (sqrt(3) +1) cot x + sqrt(3) = 0, 0 lt x lt (pi)/(2)

If r sin theta = sqrt(3), r + 4 sin theta = 2(sqrt(3)+1), 0 le theta le 2pi , then theta =

The number of roots of the equation |sin x cos x| + sqrt(2 + tan^(2) x + cot ^(2) x) = sqrt(3), " where " x in [0, 4 pi] is

Number of solutions of the equation 4 ( cos ^(2) 2 x + cos 2 x + 1) + tan x ( tan x - 2 sqrt(3)) = 0 i n [ 0, 2 pi] is

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

The number of solutions of the equation sin ((pi x)/( 2 sqrt(3))) = x^(2) - 2 sqrt(3) x + 4 is