Home
Class 11
MATHS
The no of solution of the equation log(2...

The no of solution of the equation `log_(2)(sinx)+log_(e)(tanx)=log_(4)(cos^(2)x)+log_(5)(cotx)` in `(-2pi, 2pi)`.

A

`(pi)/( 4), - ( 7 pi)/( 4)`

B

` (pi)/( 4), ( 5 pi)/( 4)`

C

` (pi)/( 4), ( 3pi)/(4)`

D

` ( 3 pi)/( 4), ( 5 pi)/( 4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(e)2=

The number of solutions of the equation sinx=log_(10)x is

The solution of the inequality log_(1//2)sin^(-1)x gt log_(1//2)cos^(-1)x is

e^(log_(e)(cos h^(-1)2)) =

If log_(2)(sinx)-log_(2)(cosx)-log_(2)(1-tanx)-log_(2)(1+tanx)=-1 then tan2x=

Find the domain of the function: f(x) = log_(2) log_(1//3) log_(3)(x^(2)-4x+3)

If log_(2)sinx-log_(2)cosx-log_(2)(1-tan^(2)x)=-1 then x =

int_(0)^(pi//2)log(tanx)dx=

log_(3)^(2), log_(6)^(2), log_(120^(2) are in