Home
Class 11
MATHS
Let x, y, z be elements from interval [...

Let x, y, z be elements from interval `[0, 2 pi]` satisfying the inequality `( 4 + sin 4 x) ( 2 + cot^(2) y) ( 1 + sin^(4 )z) le 12 sin ^(2) z ` then

A

The number of ordered pairs (z, x) is 8

B

The number of ordered pairs (y, z) such that z = y is 2

C

The number of ordered pairs (x, y) is 4

D

The number of ordered pairs ( y , z) is 6

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=Sin 1, y = Sin 2, z= Sin 3 then

Number of solution (s) satisfying the equation (1)/(si x) - (1)/( sin 2 x) = (2)/( sin 4 x) in [ 0, 4 pi] equals

If 0 le x le pi, 4^(sin^(2)) + 4 ^(cos^(2)x) = 5 , then x =

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

The number of points P(x,y) lying inside or on the circle x^(2) + y^(2) = 9 and satisfying the equation tan^(4) x + cot^(4) x + 2 = 4 sin^(2) y , is

If cos x + cos y + cos z =0 = sin + sin y +sin z then tan (x-y) =

If cos x = tan y , cot y= tan z and cot z= tan x, then sin x =

The solution of 4 sin^(2) x + tan^(2) x + cosec^(2) x + cot^(2) x - 6 = 0 " is " (n in Z)