Home
Class 11
MATHS
sin[cot^(-1){cos(tan^(-1)x)}]=...

`sin[cot^(-1){cos(tan^(-1)x)}]=`

A

`sqrt((x^(2)+2)/(x^(2)+1))`

B

`sqrt((x^(2)+1)/(x^(2)+2))`

C

`x/(sqrt(x^(2)+2))`

D

`1/(sqrt(x^(2)+2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) SINGLE ANSWER TYPE QUESTIONS)|6 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

Sin[2Cos^(-1){Cot(2tan^(-1)x)}]=0 Find x

The value of x for which sin[cot^(-1)(1+x)]=cos(tan^(-1)x) is :

The value of x for which sin[cot^(-1)(1+x)]=cos(tan^(-1)x) is :

The value of x which satisfies sin(cot^(-1)x)=cos(tan^(-1)(1+x)) is

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), The value of x for which f(x) = 0 is

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If f(x)=0 then a^(2)=

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If a^(2)=26//51," then "b^(2)=

The value of x which satisfies sin(Cot^(-1) x) = cos(Tan^(-1) + (1+x)) is