Home
Class 11
MATHS
tan^(-1)[(cosx)/(1+sinx)] is equal to...

`tan^(-1)[(cosx)/(1+sinx)]` is equal to

A

`(pi)/4-(pi)/2` for`x in (-(pi)/2,(3pi)/2)`

B

`(pi)/4-x/2` for `x in (-(pi)/2,(pi)/2)`

C

`(pi)/4-(pi)/2` for `x in ((3pi)/2,(5pi)/2)`

D

`(pi)/4-x/2` for `x in (-(3pi)/2,-(pi)/2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) SINGLE ANSWER TYPE QUESTIONS)|6 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

2Tan^(-1)(cosx)=

cos^(-1)((3+5cosx)/(5+3cosx)) is equal to

int(dx)/(1-cosx-sinx) is equal to

The value of 2tan^(-1)(cosec(tan^(-1)x)-tan(cot^(-1)x)) is equal to

"tan"^(-1)(1+sinx)/(cosx)=

If y = Tan^(-1)((cosx)/(1+sinx)) then (dy)/(dx) =