Home
Class 11
MATHS
For problems Let cos^(-1)(4x^(3)-3x)=a+b...

For problems Let `cos^(-1)(4x^(3)-3x)=a+bcos^(-1)x`
If `x in (1/2,1)` then the value of `lim_(ytoa)b cos (y)` is

A

`-1/3`

B

`-3`

C

`1/3`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) Matrix matching type questions )|1 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) Integer answer type questions )|5 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -I LEVEL -II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

For problems Let cos^(-1)(4x^(3)-3x)=a+bcos^(-1)x If x in [-1, -1/2) , then the value of a+bpi is

int Cos^(-1)(4x^(3)-3x)dx=

For problems Let cos^(-1)(4x^(3)-3x)=a+bcos^(-1)x If x in [-1/2, 1/2], then the principal value of sin^(-1)(sin""a/b)

(d)/(dx)[cos ^(-1)(4x^(3) - 3x)]=

The least value of (sin^(-1)x)^3+(cos^(-1)x)^3 is

If asin^(-1)x-bcos^(-1)x=c , then the value of asin^(-1)x+bcos^(-1)x (whenever exists) is equal to

Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)" be "pi . If x satisfies the equation ax^(3)+bx^(2)+cx-1=0 then the value of (b-a-c) is