Home
Class 11
MATHS
The sum of infinite terms of the series ...

The sum of infinite terms of the series `cot^(-1)(2^(2)+1/2)+cot^(-1)(2^(3)+1/2^(2))+cot^(-1)(2^(4)+1/2^(3))+…=cot^(-1)k` then k =

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -III LEVEL -I (MAIN) SINGLE ANSWER TYPE QUESTIONS)|15 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -III LEVEL -II (ADVANCED) SINGLE ANSWER TYPE QUESTIONS)1|1 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -II LEVEL -I (ADVANCED) MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

Sum of infinite terms of the series cot^(-1)(1^(2)+3/4)+cot^(-1)(2^(2)+3/4)+cot^(-1)(3^(2)+3/4)+….. is

tan h^(-1) ((1)/(2)) + cot h^(-1) (2) =

If cot^(-1)((1+x)/(1-x))=1/2cot^(-1)(1/x) then x=

Find the value of the following cot^(-1)(1/2)+cot^(-1)(1/3)

tan h^(-1)""(1)/(2)+ cot h^(-1) 3=

sec^(2)(tan^(-1)(2))+cosec^(2)(cot^(-1)(2))=

If sec^(-1)(1/(sqrt(1-x^(2))))+cot^(-1)((sqrt(1-x^(2)))/x)=sin^(-1)(k) then k=