Home
Class 11
MATHS
Find the values of cos(2cos^(-1)x+sin^(-...

Find the values of `cos(2cos^(-1)x+sin^(-1)x)` at x = 1/5, where `0 le cos^(-1)x le pi and -pi//2 le sin^(-1)x le pi//2`.

A

`(2sqrt(6))/5`

B

`-(2sqrt(6))/5`

C

`(sqrt(6))/5`

D

`-(sqrt(6))/5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -III LEVEL -II (ADVANCED) SINGLE ANSWER TYPE QUESTIONS)1|1 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -III LEVEL -II (ADVANCED) SINGLE ANSWER TYPE QUESTIONS)2|1 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -II LEVEL -I (ADVANCED) INTEGER ANSWER TYPE QUESTIONS)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 2 pi and |cos x| le sin x , then

If a le sin^(-1)x+cos^(-1)x+tan^(-1)x le b , then

The values of Sin^(-1)(cos{Cos^(-1)(cosx)+Sin^(-1)(sinx)})" where "x in (pi/2, pi) is

The function sin^(-1)x + cos^(-1)x (-1 le x le 1) is:

A : The range of Sin^(-1)2x+Cos^(-1)2x" is "{pi} R : The range of Sin^(-1)x+Cos^(-1)x" is "{pi//2}